高级检索
当前位置: 首页 > 详情页

Detecting Absence of Bone Wall in Jugular Bulb by Image Transformation Surrogate Tasks

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China [2]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: Task analysis Feature extraction Anomaly detection Bones Biomedical imaging Computed tomography Medical diagnostic imaging Medical image analysis anomaly detection temporal bone CT image surrogate tasks

摘要:
Anomaly detection in medical images is important in computer-aided diagnosis. It is a challenging task due to limited anomaly data, sample imbalance, and local differences between the normal and abnormal patterns. Abnormal manifestations in medical images have a definite clinical definition and descriptions, which can be introduced to improve the accuracy of detection rate. In this paper, we propose an anomaly detection method via image transformation surrogate tasks and apply it to detect the absence of bone wall in jugular bulb of temporal bone CT images. First, we design a pair of contrastive surrogate tasks, including an abnormal region completion and a normal background erasure, to decouple the similarity of the normal and abnormal examples. Then, image synthesis strategies for the surrogate tasks are designed, which alleviates the problem of limited abnormal data. Further, an abnormal scoring module is proposed, which includes MSE, SSIM, and local error intensity, to fuse the results of the surrogate tasks. We verify the effectiveness of our proposed method on the jugular bulb data set and experimental results show that the accuracy of our method is 0.995 and the AUC (Area Under the Curve) is 0.994.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 成像科学与照相技术 1 区 核医学 2 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)