高级检索
当前位置: 首页 > 详情页

Physics-informed deep neural network reconstruction framework for propagation-based x ray phase-contrast computed tomography with sparse-view projections

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Tianjin Med Univ, Sch Biomed Engn & Technol, Tianjin 300070, Peoples R China [2]Tianjin Univ Technol & Educ, Sch Sci, Tianjin 300222, Peoples R China [3]Tianjin Med Univ, Dept Radiat Oncol, Gen Hosp, Tianjin 300052, Peoples R China [4]Capital Med Univ, Beijing Friendship Hosp, Liver Res Ctr, Beijing 100050, Peoples R China [5]Beijing Key Lab Translat Med Liver Cirrhosis & Na, Beijing 100050, Peoples R China [6]Natl Clin Res Ctr Digest Dis, Beijing 100050, Peoples R China
出处:
ISSN:

摘要:
Propagation-based phase contrast computed tomography (PB-PCCT) is an effective technique for three-dimensional visualization of weakly attenuating samples. However, the high radiation dose caused by the long sampling time has hindered the wider adoption of PB-PCCT. By incorporating the physical imaging model of PB-PCCT with a deep neural network, this Letter develops a physics-informed deep learning reconstruction framework for sparse-view PB-PCCT. Simulation and real experiments are performed to validate the effectiveness and capability of the proposed framework. Results show that the proposed framework obtains phaseretrieved and streaking artifacts removed PB-PCCT images from only one sparse-view measured intensity without any pretrained network and labeled data. (C) 2022 Optica Publishing Group

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 物理与天体物理
小类 | 2 区 光学
最新[2025]版:
大类 | 2 区 物理与天体物理
小类 | 3 区 光学
JCR分区:
出版当年[2020]版:
Q1 OPTICS
最新[2023]版:
Q2 OPTICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Tianjin Med Univ, Sch Biomed Engn & Technol, Tianjin 300070, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)