高级检索
当前位置: 首页 > 详情页

PrivacyMask: Real-world privacy protection in face ID systems

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China [2]Beijing Univ Technol, Network & Informat Technol Ctr, Beijing 100124, Peoples R China [3]Beijing Friendship Hosp, Med Engn Div, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: privacy protection neural network facial recognition adversarial attacks spatial mapping transferability nonlinear transformation

摘要:
Recent works have illustrated that many facial privacy protection methods are effective in specific face recognition algorithms. However, the COVID-19 pandemic has promoted the rapid innovation of face recognition algorithms for face occlusion, especially for the face wearing a mask. It is tricky to avoid being tracked by artificial intelligence only through ordinary props because many facial feature extractors can determine the ID only through a tiny local feature. Therefore, the ubiquitous high-precision camera makes privacy protection worrying. In this paper, we establish an attack method directed against liveness detection. A mask printed with a textured pattern is proposed, which can resist the face extractor optimized for face occlusion. We focus on studying the attack efficiency in adversarial patches mapping from two-dimensional to three-dimensional space. Specifically, we investigate a projection network for the mask structure. It can convert the patches to fit perfectly on the mask. Even if it is deformed, rotated and the lighting changes, it will reduce the recognition ability of the face extractor. The experimental results show that the proposed method can integrate multiple types of face recognition algorithms without significantly reducing the training performance. If we combine it with the static protection method, people can prevent face data from being collected.

语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 工程技术
小类 | 4 区 数学与计算生物学
最新[2025]版:
JCR分区:
出版当年[2020]版:
Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)