单位:[1]Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China临床科室麻醉科麻醉科首都医科大学附属北京友谊医院
Isoflurane/surgery (I/S) may induce neurocognitive disorders, but detailed mechanisms and appropriate treatment remain largely unknown. This experiment was designed to determine whether ginsenoside Rg1 could attenuate I/S-induced neurocognitive disorders and Sirtuin3 (Sirt3) dysfunction. C57BL/6J male mice received 1.4% isoflurane plus abdominal surgery for 2 h. Ginsenoside Rg1 10 mg/kg was intraperitoneally given for 8 days before surgery. Neurocognitive function was assessed by the Barnes Maze test. Levels of reactive oxygen species (ROS), oxygen consumption rate (OCR), mitochondrial membrane potential (MMP), expression and deacetylation activity of Sirt3 in the hippocampus tissues were measured. Results showed that I/S induced hippocampus-dependent learning and memory impairments, with increased ROS levels, and reduced OCR, MMP, and expression and deacetylation activity of Sirt3 in hippocampus tissues. Ginsenoside Rg1 treatment before I/S intervention significantly ameliorated learning and memory performance, reduced ROS levels and improved the OCR, MMP, expression and deacetylation activity of Sirt3. In conclusion, this experiment demonstrates that ginsenoside Rg1 treatment can attenuate I/S-induced neurocognitive disorders and Sirt3 dysfunction.
基金:
National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81701040]; Beijing Talents Fund [2017000021469G258]