高级检索
当前位置: 首页 > 详情页

Downregulation of neuroligin1 ameliorates postoperative pain through inhibiting neuroligin1/postsynaptic density 95-mediated synaptic targeting of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluA1 subunits in rat dorsal horns

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China [2]Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China [3]Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA [4]Department of Neurobiology, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: postoperative pain spinal cord neuroligin1 AMPA receptor PSD-95

摘要:
Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study to examine changes in the expression of postsynaptic membrane of neuroligin1, postsynaptic density 95 (PSD-95), and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluA1 and GluA2 subunits in the spinal cord dorsal horn after injury. The interaction between neuroligin1 and PSD-95 was further determined by using coimmunoprecipitation. Protein levels of neuroligin1 and GluA1, but not GluA2 and PSD-95, were significantly increased in the postsynaptic membrane of the ipsilateral dorsal horn at 3 h and 1 day after incision, as compared to that in control group (naive). A greater amount of PSD-95 was coimmunoprecipitated with neuroligin1 at 3 h after incision than that in the control group. Intrathecal administration of small interfering RNAs (siRNAs) targeting neuroligin1 suppressed the expression of neuroligin1 in the spinal cord. Importantly, pretreatment with intrathecal neuroligin1 siRNA(2497), but not scrambled siRNA or vehicle, prevented the upregulation of GluA1 expression at 3 h after incision, inhibited the enhanced neuroligin1/PSD-95 interaction, and attenuated postoperative pain. Together, current findings suggest that downregulation of spinal neuroligin1 expression may ameliorate postoperative pain through inhibiting neuroligin1/PSD-95 interaction and synaptic targeting of GluA1 subunit. Accordingly, spinal neuroligin1 may be a potential new target for postoperative pain treatment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 医学
小类 | 3 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2016]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2016版] 出版当年五年平均[2012-2016] 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
通讯作者:
通讯机构: [1]Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China [2]Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China [*1]Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China. [*2]Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)