高级检索
当前位置: 首页 > 详情页

cnnCNV: A Sensitive and Efficient Method for Detecting Copy Number Variation based on Convolutional Neural Networks

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

单位: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China [2]China Japan Friendship Hosp, Dept Radiat Oncol, Beijing, Peoples R China
出处:
ISSN:

关键词: convolutional neural networks structural variations calling copy number variation

摘要:
Along with the promotion and application of genetic techniques, desiring to improve the efficiency of calling copy number variation (CNV) in next-generation sequencing analysis technics (NGS) data turns into a requirement. A single existing method is insufficient for calling all potential CNVs. In this paper, we present cnnCNV, a convolutional neural network (CNV) based framework for calling CNV. Firstly, cnnCNV merges the output of existing CNV calling tools as candidates; secondly, generates images of each candidate region from aligned reads based on multiple detection theories; finally, a trained model can be used to classify candidates into true and false. Our approach was tested on simulated data comparing with existing tools, including Breakdancer, Control-FREEC, CNVnator, Delly and readDepth. Results show that cnnCNV improve precision and sensitivity of CNV calling remarkably. Pseudo-code of image generation can be download at: The pseudo-code of image creation can be downloaded at: https://github.com/StudMs/cnnCNV.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者单位: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)