高级检索
当前位置: 首页 > 详情页

Dynamic MRI-derived parameters for hot and cold spots: correlation with breast cancer histopathology

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Capital Med Univ, Affiliated Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: breast cancer dynamic MRI MRI prognosis

摘要:
Purpose: To identify the dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging features that may predict the outcome of patients with breast cancer. Methods: DCE-MR images from 87 patients newly diagnosed with primary breast cancer were reviewed. The kinetic parameters (including cold spot, hot spot, and heterogeneity parameters) were derived from the DCE-MRI data. These parameters were used to thoroughly reflect the tumor status. The association of dynamic MR features (including kinetic and morphological features) with established prognostic indicators was evaluated. Results: Malignant tumors with poor histomorphological indicators showed higher values of hot spot parameters (maximal initial Slope [maxSlope(i)] and maximal Washout [maxWashout]), higher values of a heterogeneity parameter-initial slope ratio (Slope(i) ratio) and lower values of a cold spot parameter (minimal initial slope [minSlope(i)]) than those with favorable prognostic indicators. The heterogeneous internal enhancement pattern and rim-like enhancement pattern were more frequently observed in patients with poor prognostic indicators. Moreover binary logistic regression analysis showed that kinetic parameters Slope(i) ratio (p=0.021), minSlope(i) (p=0.024), internal homogeneity (p=0.001), and maxSlope(i) (p<0.001) were independently and significantly associated with histological grade, lymph node status, tumor size, and Ki-67, respectively. Conclusion: Our results suggest that all hot spot, cold spot, and heterogeneity parameters may be useful to noninvasively identify highly aggressive breast carcinomas. More importantly, cold spot and heterogeneity parameters may serve as crucial indicators to predict the outcome of breast cancer

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2011]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
JCR分区:
出版当年[2010]版:
Q4 ONCOLOGY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2010版] 出版当年五年平均[2006-2010] 出版前一年[2009版] 出版后一年[2011版]

第一作者:
第一作者单位: [1]Capital Med Univ, Affiliated Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China
通讯作者:
通讯机构: [1]Capital Med Univ, Affiliated Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China [*1]Capital Med Univ, Affiliated Beijing Friendship Hosp, Dept Radiol, 95 YongAn Rd, Beijing 100050, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)