高级检索
当前位置: 首页 > 详情页

Mechanism and effects of fructose diphosphate on anti-hypoxia fatigue and learning memory ability

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [a]Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China [b]Department of Pharmacology, Jinzhou Medical University, Jinzhou 121001, China [c]Faculty of Health and Life Sciences, Coach Lane Campus, Northumbria University, Newcastle upon Tyne, NE7 7LN, UK
出处:
ISSN:

关键词: fatigue resistance fructose diphosphate glucose metabolism hypoxia tolerance learning and memory ability

摘要:
This study aims to investigate the mechanisms through which fructose diphosphate (FDP) causes anti-hypoxia and anti-fatigue effects and improves learning and memory. Mice were divided into three groups: low-dose FDP (FDP-L), high-dose FDP (FDP-H), and a control group. Acute toxic hypoxia induced by carbon monoxide, sodium nitrite, and potassium cyanide and acute cerebral ischemic hypoxia were used to investigate the anti-hypoxia ability of FDP. The tests of rod-rotating, mouse tail suspension, and swimming endurance were used to explore the anti-fatigue effects of FDP. The Morris water maze experiment was used to determine the impact of FDP on learning and memory ability. Poisoning-induced hypoxic tests showed that mouse survival time was significantly prolonged in the FDP-L and FDP-H groups compared with the control group (p < 0.05). In the exhaustive swimming test, FDP significantly shortened struggling time and prolonged the time of mass-loaded swimming; the rod-rotating test showed that endurance time was significantly prolonged by using FDP (p < 0.05). FDP significantly decreased lactate and urea nitrogen levels and increased hepatic and muscle glycogen and glucose transporter-4 and Na+-K+-ATPase (p < 0.05). To conclude, FDP enhances hypoxia tolerance and fatigue resistance and improves learning and memory ability through regulating glucose and energy metabolism.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 药学 4 区 生理学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 药学 4 区 生理学
JCR分区:
出版当年[2018]版:
Q3 PHARMACOLOGY & PHARMACY Q3 PHYSIOLOGY
最新[2023]版:
Q3 PHARMACOLOGY & PHARMACY Q4 PHYSIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2018版] 出版当年五年平均[2014-2018] 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [a]Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)