高级检索
当前位置: 首页 > 详情页

Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China [2]Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China [3]Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China [4]Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland [5]Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland [6]The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China [7]Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
出处:
ISSN:

关键词: ERK1/2 Neuregulin-1 NLRP3 NOX4

摘要:
Neuregulin-1 (NRG-1) is reported to be cardioprotective through the extracellular-regulated protein kinase (ERK) 1/2 pathway in myocardial ischaemia-reperfusion injury (MIRI). NOX4-induced ROS activated NLRP3 inflammasome and exacerbates MIRI. This study aims to investigate whether NRG-1 can suppress NOX4 by ERK1/2 and consequently inhibit the NLRP3/caspase-1 signal in MIRI. The myocardial infarct size (IS) was measured by TTC-Evans blue staining. Immunohistochemical staining, real-time quantitative PCR (RT-qPCR) and Western blotting were used for detection of the factors, such as NOX4, ERK1/2, NLRP3, caspase-1 and IL-1 beta .The IS in the NRG-1 (3 mu g/kg, intravenous) group was lower than that in the IR group. Immunohistochemical analysis revealed NRG-1 decreased 4HNE and NOX4. The RT-qPCR and Western blot analyses revealed that NRG-1 mitigated the IR-induced up-regulation of NOX4 and ROS production. Compared with the IR group, the NRG-1 group exhibited a higher level of P-ERK1/2 and a lower level of NLRP3. In the Langendorff model, PD98059 inhibited ERK1/2 and up-regulated the expression of NOX4, NLRP3, caspase-1 and IL-1 beta, which exacerbated oxidative stress and inflammation. In conclusion, NRG-1 can reduce ROS production by inhibiting NOX4 through ERK1/2 and inhibit the NLRP3/caspase-1 pathway to attenuate myocardial oxidative damage and inflammation in MIRI.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验 3 区 细胞生物学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 医学:研究与实验
JCR分区:
出版当年[2019]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 CELL BIOLOGY
最新[2023]版:
Q2 CELL BIOLOGY Q2 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China [2]Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
通讯作者:
通讯机构: [2]Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China [7]Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China [*1]Department of Cardiology, Peking University Third Hospital, 9, HuaYuanBei Road, HaiDian District, Beijing 100191, China. [*2]Institute of Cardiovascular Sciences, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing 100191, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)