高级检索
当前位置: 首页 > 详情页

Extraction and Visualization of Ocular Blood Vessels in 3D Medical Images Based on Geometric Transformation Algorithm

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China [2]Department of Traditional Chinese Medicine, Haidian Traditional Chinese Medical Hospital, Beijing 100080, China [3]Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
出处:
ISSN:

摘要:
Data extraction and visualization of 3D medical images of ocular blood vessels are performed by geometric transformation algorithm, which first performs random resonance response in a global sense to achieve detection of high-contrast coarse blood vessels and then redefines the input signal as a local image shielding the global detection result to achieve enhanced detection of low-contrast microfine vessels and complete multilevel random resonance segmentation detection. Finally, a random resonance detection method for fundus vessels based on scale decomposition is proposed, in which the images are scale decomposed, the high-frequency signals containing detailed information are randomly resonantly enhanced to achieve microfine vessel segmentation detection, and the final vessel segmentation detection results are obtained after fusing the low-frequency image signals. The optimal stochastic resonance response of the nonlinear model of neurons in the global sense is obtained to detect the high-grade intensity signal; then, the input signal is defined as a local image with high-contrast blood vessels removed, and the parameters are optimized before the detection of the low-grade intensity signal. Finally, the multilevel random resonance response is fused to obtain the segmentation results of the fundus retinal vessels. The sensitivity of the multilevel segmentation method proposed in this paper is significantly improved compared with the global random resonance results, indicating that the method proposed in this paper has obvious advantages in the segmentation of vessels with low-intensity levels. The image library was tested, and the experimental results showed that the new method has a better segmentation effect on low-contrast microscopic blood vessels. The new method not only makes full use of the noise for weak signal detection and segmentation but also provides a new idea of how to achieve multilevel segmentation and recognition of medical images.

语种:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 卫生保健与服务
最新[2025]版:
JCR分区:
出版当年[2019]版:
Q3 HEALTH CARE SCIENCES & SERVICES
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)