高级检索
当前位置: 首页 > 详情页

Augmented Multicenter Graph Convolutional Network for COVID-19 Diagnosis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Shenzhen Univ, Sch Biomed Engn, Hlth Sci Ctr, Shenzhen 518060, Peoples R China [2]Capital Med Univ, Fuxing Hosp, Dept Radiol, Beijing 100038, Peoples R China [3]China Japan Friendship Hosp, Dept Radiol, Beijing 100029, Peoples R China
出处:
ISSN:

关键词: Feature extraction Training Computed tomography COVID-19 Medical diagnostic imaging Task analysis Three-dimensional displays Coronavirus 2019 (COVID-19) diagnosis data augmentation graph convolutional network (GCN) multicenter datasets

摘要:
Chest computed tomography (CT) scans of coronavirus 2019 (COVID-19) disease usually come from multiple datasets gathered from different medical centers, and these images are sampled using different acquisition protocols. While integrating multicenter datasets increases sample size, it suffers from inter-center heterogeneity. To address this issue, we propose an augmented multicenter graph convolutional network (AM-GCN) to diagnose COVID-19 with steps as follows. First, we use a 3-D convolutional neural network to extract features from the initial CT scans, where a ghost module and a multitask framework are integrated to improve the network's performance. Second, we exploit the extracted features to construct a multicenter graph, which considers the intercenter heterogeneity and the disease status of training samples. Third, we propose an augmentation mechanism to augment training samples which forms an augmented multicenter graph. Finally, the diagnosis results are obtained by inputting the augmented multi-center graph into GCN. Based on 2223 COVID-19 subjects and 2221 normal controls from seven medical centers, our method has achieved a mean accuracy of 97.76%. The code for our model is made publicly.(1)

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 工程技术
小类 | 1 区 自动化与控制系统 1 区 计算机:跨学科应用 1 区 工程:工业
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:跨学科应用 1 区 工程:工业
JCR分区:
出版当年[2019]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, INDUSTRIAL Q1 AUTOMATION & CONTROL SYSTEMS
最新[2024]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, INDUSTRIAL

影响因子: 最新[2024版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Shenzhen Univ, Sch Biomed Engn, Hlth Sci Ctr, Shenzhen 518060, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:819 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)