高级检索
当前位置: 首页 > 详情页

Evolving fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study of lupus nephritis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [a]Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China [b]Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, 100029, China [c]Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China [d]Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore [e]Department of Computer Science, Birzeit University, POBox 14, West Bank, Palestine [f]Department of Information Technology, College of Computers and Information Technology, P.O. Box11099, Taif, 21944, Taif University, Taif, Saudi Arabia [g]Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
出处:
ISSN:

关键词: Sine cosine algorithm Optimization Fuzzy K-Nearest neighbors Linear population size reduction mechanism Lupus nephritis

摘要:
Because of its simplicity and effectiveness, fuzzy K-nearest neighbors (FKNN) is widely used in literature. The parameters have an essential impact on the performance of FKNN. Hence, the parameters need to be attuned to suit different problems. Also, choosing more representative features can enhance the performance of FKNN. This research proposes an improved optimization technique based on the sine cosine algorithm (LSCA), which introduces a linear population size reduction mechanism for enhancing the original algorithm's performance. Moreover, we developed an FKNN model based on the LSCA, it simultaneously performs feature selection and parameter optimization. Firstly, the search performance of LSCA is verified on the IEEE CEC2017 benchmark test function compared to the classical and improved algorithms. Secondly, the validity of the LSCA-FKNN model is verified on three medical datasets. Finally, we used the proposed LSCA-FKNN to predict lupus nephritis classes, and the model showed competitive results. The paper will be supported by an online web service for any question at https://aliasgharheidari.com.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 2 区 数学与计算生物学 3 区 生物学 3 区 计算机:跨学科应用 3 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2019]版:
Q1 BIOLOGY Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [a]Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)