高级检索
当前位置: 首页 > 详情页

Spatial-Spectral Density Peaks-Based Discriminant Analysis for Membranous Nephropathy Classification Using Microscopic Hyperspectral Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, 100081 Beijing, China [2]Graduate School of Biomedical Engineering, UNSW, Sydney, Australia [3]Department of Kidney Disease, China-Japan friendship hospital, Beijing, 100029, China
出处:
ISSN:

关键词: Manganese Microscopy Hyperspectral imaging Immune system Germanium Diseases Optical microscopy Classification dimensionality reduction membranous nephropathy diagnosis microscopic hyperspectral imaging

摘要:
The traditional differential diagnosis of membranous nephropathy (MN) mainly relies on clinical symptoms, serological examination and optical renal biopsy. However, there is a probability of false positives in the optical inspection results, and it is unable to detect the change of biochemical components, which poses an obstacle to pathogenic mechanism analysis. Microscopic hyperspectral imaging can reveal detailed component information of immune complexes, but the high dimensionality of microscopic hyperspectral image brings difficulties and challenges to image processing and disease diagnosis. In this paper, a novel classification framework, including spatial-spectral density peaks-based discriminant analysis (SSDP), is proposed for intelligent diagnosis of MN using a microscopic hyperspectral pathological dataset. SSDP constructs a set of graphs describing intrinsic structure of MHSI in both spatial and spectral domains by employing density peak clustering. In the process of graph embedding, low-dimensional features with important diagnostic information in the immune complex are obtained by compacting the spatial-spectral local intra-class pixels while separating the spectral inter-class pixels. For the MN recognition task, a support vector machine (SVM) is used to classify pixels in the low-dimensional space. Experimental validation data employ two types of MN that are difficult to distinguish with optical microscope, including primary MN and hepatitis B virus-associated MN. Experimental results show that the proposed SSDP achieves a sensitivity of 99.36%, which has potential clinical value for automatic diagnosis of MN.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 工程技术
小类 | 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2019]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, 100081 Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)