高级检索
当前位置: 首页 > 详情页

基于多视角融合和主动轮廓约束的深度学习算法在10 μm级耳科专用CT图像上对听小骨分割的效果探讨

Analysis of the performance of a multi-view fusion and active contour constraint based deep learning algorithm for ossicles segmentation on 10 μm otology CT

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C ◇ 中华系列

单位: [1]北京工业大学信息学部,北京100124 [2]首都医科大学附属北京友谊医院放射科,北京100050
出处:
ISSN:

关键词: 体层摄影术 X线计算机 耳科专用CT 听小骨 分割 颞骨 深度学习

摘要:
目的:探讨多视角融合以及主动轮廓约束的深度学习算法在10 μm级耳科专用CT图像上对听小骨分割的效果。方法:回顾性收集2019年10月至2020年12月北京友谊医院放射科10 μm级耳科专用CT检查的受试者数据共79侧耳(56侧来自志愿者,23侧来自标本)。对锤骨、砧骨和镫骨进行标注,将其划分为训练集(55侧)、验证集(8侧)和测试集(16侧)。采用感兴趣区域快速定位结合精准分割算法,分别从冠状面、矢状面和横断面3个视角对锤骨、砧骨和镫骨进行分割与融合。针对镫骨,同时设计了基于主动轮廓损失的镫骨分割方法。分割实验采用客观指标Dice相似系数(DSC)作为判别标准,比较本方法与基础方法、本方法与其他分割方法的组间DSC差异。结果:多视角融合分割算法对锤骨、砧骨和镫骨的平均DSC值分别为94.2%±2.7%、94.6%±2.6%和76.0%±5.5%;结合主动轮廓损失的约束方法后,对镫骨的平均DSC值进一步提升(76.4%±5.4%比76.0%±5.5%),且可视化结果显示镫骨结构的分割结果更加完整。结论:基于10 μm级耳科专用CT数据的多视角融合算法可实现对锤骨和砧骨结构的精准分割,结合主动轮廓损失约束方法,可进一步提升对镫骨结构的分割精度。

基金:
语种:
PubmedID:
第一作者:
第一作者单位: [1]北京工业大学信息学部,北京100124
通讯作者:
推荐引用方式(GB/T 7714):

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)