高级检索
当前位置: 首页 > 详情页

Recognition of Peripheral Lung Cancer and Focal Pneumonia on Chest Computed Tomography Images Based on Convolutional Neural Network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China. [2]Key laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China. [3]University of Chinese Academy of Sciences, Beijing, China.
出处:
ISSN:

关键词: chest CT peripheral lung cancer focal pneumonia 3D CNN window settings

摘要:
Introduction: Chest computed tomography (CT) is important for the early screening of lung diseases and clinical diagnosis, particularly during the COVID-19 pandemic. We propose a method for classifying peripheral lung cancer and focal pneumonia on chest CT images and undertake 5 window settings to study the effect on the artificial intelligence processing results. Methods: A retrospective collection of CT images from 357 patients with peripheral lung cancer having solitary solid nodule or focal pneumonia with a solitary consolidation was applied. We segmented and aligned the lung parenchyma based on some morphological methods and cropped this region of the lung parenchyma with the minimum 3D bounding box. Using these 3D cropped volumes of all cases, we designed a 3D neural network to classify them into 2 categories. We also compared the classification results of the 3 physicians with different experience levels on the same dataset. Results: We conducted experiments using 5 window settings. After cropping and alignment based on an automatic preprocessing procedure, our neural network achieved an average classification accuracy of 91.596% under a 5-fold cross-validation in the full window, in which the area under the curve (AUC) was 0.946. The classification accuracy and AUC value were 90.48% and 0.957 for the junior physician, 94.96% and 0.989 for the intermediate physician, and 96.92% and 0.980 for the senior physician, respectively. After removing the error prediction, the accuracy improved significantly, reaching 98.79% in the self-defined window2. Conclusion: Using the proposed neural network, in separating peripheral lung cancer and focal pneumonia in chest CT data, we achieved an accuracy competitive to that of a junior physician. Through a data ablation study, the proposed 3D CNN can achieve a slightly higher accuracy compared with senior physicians in the same subset. The self-defined window2 was the best for data training and evaluation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2020]版:
Q3 ONCOLOGY
最新[2023]版:
Q3 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
通讯作者:
通讯机构: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China. [*1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)