高级检索
当前位置: 首页 > 详情页

The influence of artificial intelligence assistance on the diagnostic performance of CCTA for coronary stenosis for radiologists with different levels of experience

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China [2]Shukun (Beijing) Technology Co., Ltd., Beijing, PR China [3]Department of Computer Software Engineering, Soonchunhyang University, Asan, Republic of Korea
出处:
ISSN:

关键词: Coronary coronary computed tomography angiography artificial intelligence diagnostic performance experience

摘要:
Background The interpretation of coronary computed tomography angiography (CCTA) stenosis may be difficult among radiologists of different experience levels. Artificial intelligence (AI) may improve the diagnostic performance. Purpose To investigate whether the diagnostic performance and time efficiency of radiologists with different levels of experience in interpreting CCTA images could be improved by using CCTA with AI assistance (CCTA-AI). Material and Methods This analysis included 200 patients with complete CCTA and invasive coronary angiography (ICA) data, using ICA results as the reference. Eighteen radiologists were divided into three levels based on experience (Levels I, II, and III), and the three levels were divided into groups without (Groups 1, 2, and 3) and with (Groups 4, 5, and 6) AI assistance, totaling six groups (to avoid reader recall bias). The average sensitivity, specificity, NPV, PPV, and AUC were reported for the six groups and CCTA-AI at the patient, vessel, and segment levels. The interpretation time in the groups with and without CCTA-AI was recorded. Results Compared to the corresponding group without CCTA-AI, the Level I group with CCTA-AI had improved sensitivity (75.0% vs. 83.0% on patient-based; P = 0.003). At Level III, the specificity was better with CCTA-AI. The median interpretation times for the groups with and without CCTA-AI were 413 and 615 s, respectively (P < 0.001). Conclusion CCTA-AI could assist with and improve the diagnostic performance of radiologists with different experience levels, with Level I radiologists exhibiting improved sensitivity and Level III radiologists exhibiting improved specificity. The use of CCTA-AI could shorten the training time for radiologists.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2020]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
通讯作者:
通讯机构: [1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China [*1]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 YongAn Road, Beijing 100050, PR China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)