高级检索
当前位置: 首页 > 详情页

Drug Specification Named Entity Recognition base on BiLSTM-CRF Model

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP) ◇ EI

单位: [1]Software School North university of China Taiyuan, Shanxi [2]Research Institute of Information Technology Tsinghua University Beijing [3]Beijing Dfusion Co.Ltd. Beijing [4]Department of Pulmonary and Critical Care Medicine China-Japan Friendship Hospital [5]National Clinical Research Center for Respiratory Diseases [6]Institute of Respiratory Medicine, Chinese Academy of Medical Science Beijing
出处:
ISSN:

关键词: BiLSTM CRF Named Entity Recognition Deep Learning Drug Specification

摘要:
In order to realize automatic recognition and extraction of entities in unstructured medical texts, a model combining language model conditional random field algorithm (CRF) and Bi-directional Long Short-term Memory networks (BiLSTM) is proposed. We crawled 804 drug specifications for treating asthma from the Internet, and then quantized the normalized field of drug specification word by a vector as the input of the neural network. Compared with the traditional machine learning algorithm CRF model, the system accuracy, recall and F1 value are improved by 6.18%, 5.2% and 4.87%. This model is applicable to extract named entity information from drug specification.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者单位: [1]Software School North university of China Taiyuan, Shanxi
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)