高级检索
当前位置: 首页 > 详情页

A deep learning based pipeline for optical coherence tomography angiography

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China [2]Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China [3]Shenzhen Graduate School, Peking University, Shenzhen, China [4]Institute of Image Processing and Pattern Recognition, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China [5]Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander- University Erlangen-Nuremberg, Erlangen, Germany
出处:
ISSN:

关键词: CNN deep learning OCT angiography

摘要:
Optical coherence tomography angiography (OCTA) is a relatively new imaging modality that generates microvasculature map. Meanwhile, deep learning has been recently attracting considerable attention in image-to-image translation, such as image denoising, super-resolution and prediction. In this paper, we propose a deep learning based pipeline for OCTA. This pipeline consists of three parts: training data preparation, model learning and OCTA predicting using the trained model. To be mentioned, the datasets used in this work were automatically generated by a conventional system setup without any expert labeling. Promising results have been validated by in-vivo animal experiments, which demonstrate that deep learning is able to outperform traditional OCTA methods. The image quality is improved in not only higher signal-to-noise ratio but also better vasculature connectivity by laser speckle eliminating, showing potential in clinical use. Schematic description of the deep learning based optical coherent tomography angiography pipeline.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 生物
小类 | 2 区 生化研究方法 2 区 生物物理 2 区 光学
最新[2025]版:
大类 | 3 区 物理与天体物理
小类 | 3 区 生物物理 4 区 生化研究方法 4 区 光学
JCR分区:
出版当年[2017]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 BIOPHYSICS Q1 OPTICS
最新[2023]版:
Q3 BIOCHEMICAL RESEARCH METHODS Q3 BIOPHYSICS Q3 OPTICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2017版] 出版当年五年平均[2013-2017] 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
通讯作者:
通讯机构: [5]Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander- University Erlangen-Nuremberg, Erlangen, Germany [*1]Pattern Recognition Lab, Department of Computer Science, Friedrich- Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)