高级检索
当前位置: 首页 > 详情页

A new estimation of protein-level false discovery rate

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ CPCI(ISTP)

单位: [1]The Dental Center of China-Japan Friendship Hospital, Beijing, China [2]ShenZhen Research Institute of Big Data, ShenZhen, China
出处:
ISSN:

关键词: FDR Proteomics Permutation Null distribution

摘要:
Background: In mass spectrometry-based proteomics, protein identification is an essential task. Evaluating the statistical significance of the protein identification result is critical to the success of proteomics studies. Controlling the false discovery rate (FDR) is the most common method for assuring the overall quality of the set of identifications. Existing FDR estimation methods either rely on specific assumptions or rely on the two-stage calculation process of first estimating the error rates at the peptide-level, and then combining them somehow at the protein-level. We propose to estimate the FDR in a non-parametric way with less assumptions and to avoid the two-stage calculation process. Results: We propose a new protein-level FDR estimation framework. The framework contains two major components: the Permutation+BH (Benjamini-Hochberg) FDR estimation method and the logistic regression-based null inference method. In Permutation+BH, the null distribution of a sample is generated by searching data against a large number of permuted random protein database and therefore does not rely on specific assumptions. Then, p-values of proteins are calculated from the null distribution and the BH procedure is applied to the p-values to achieve the relationship of the FDR and the number of protein identifications. The Permutation+BH method generates the null distribution by the permutation method, which is inefficient for online identification. The logistic regression model is proposed to infer the null distribution of a new sample based on existing null distributions obtained from the Permutation+BH method. Conclusions: In our experiment based on three public available datasets, our Permutation+BH method achieves consistently better performance than MAYU, which is chosen as the benchmark FDR calculation method for this study. The null distribution inference result shows that the logistic regression model achieves a reasonable result both in the shape of the null distribution and the corresponding FDR estimation result.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 生物
小类 | 2 区 生物工程与应用微生物 3 区 遗传学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生物工程与应用微生物 3 区 遗传学
JCR分区:
出版当年[2016]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 GENETICS & HEREDITY
最新[2023]版:
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2016版] 出版当年五年平均[2012-2016] 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]The Dental Center of China-Japan Friendship Hospital, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:817 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)