高级检索
当前位置: 首页 > 详情页

Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China
出处:
ISSN:

关键词: renalase chronic kidney disease renal interstitial fibrosis ERK signaling pathway epithelial-mesenchymal transition

摘要:
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-beta 1 (TGF-beta 1)-induced epithelial-mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of alpha-smooth muscle actin (alpha-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-beta 1-mediated upregulation of alpha-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-beta 1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-beta 1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 化学
小类 | 3 区 生化与分子生物学 3 区 化学综合
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生化与分子生物学 3 区 化学:综合
JCR分区:
出版当年[2015]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 CHEMISTRY, MULTIDISCIPLINARY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 CHEMISTRY, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2015版] 出版当年五年平均[2011-2015] 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者单位: [1]Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)