高级检索
当前位置: 首页 > 详情页

Combination of Radiological and Gray Level Co-occurrence Matrix Textural Features Used to Distinguish Solitary Pulmonary Nodules by Computed Tomography

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Capital Med Univ, Sch Publ Hlth & Family Med, Beijing 100069, Peoples R China [2]Beijing Municipal Key Lab Clin Epidemiol, Beijing 100069, Peoples R China [3]Capital Med Univ, Beijing Chest Hosp, Dept Radiol, Beijing 101149, Peoples R China [4]Capital Med Univ, Friendship Hosp, Dept Radiol, Beijing 100053, Peoples R China [5]Capital Med Univ, Sch Publ Hlth & Family Med, Dept Epidemiol & Hlth Stat, Beijing 100069, Peoples R China
出处:
ISSN:

关键词: Radiological features Textural features Feature selection Solitary pulmonary nodules BP neural network

摘要:
The objective of this study was to investigate the method of the combination of radiological and textural features for the differentiation of malignant from benign solitary pulmonary nodules by computed tomography. Features including 13 gray level co-occurrence matrix textural features and 12 radiological features were extracted from 2,117 CT slices, which came from 202 (116 malignant and 86 benign) patients. Lasso-type regularization to a nonlinear regression model was applied to select predictive features and a BP artificial neural network was used to build the diagnostic model. Eight radiological and two textural features were obtained after the Lasso-type regularization procedure. Twelve radiological features alone could reach an area under the ROC curve (AUC) of 0.84 in differentiating between malignant and benign lesions. The 10 selected characters improved the AUC to 0.91. The evaluation results showed that the method of selecting radiological and textural features appears to yield more effective in the distinction of malignant from benign solitary pulmonary nodules by computed tomography.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2025]版:
大类 | 3 区 工程技术
小类 | 3 区 核医学
JCR分区:
出版当年[2011]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2011版] 出版当年五年平均[2007-2011] 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者单位: [1]Capital Med Univ, Sch Publ Hlth & Family Med, Beijing 100069, Peoples R China
通讯作者:
通讯机构: [2]Beijing Municipal Key Lab Clin Epidemiol, Beijing 100069, Peoples R China [5]Capital Med Univ, Sch Publ Hlth & Family Med, Dept Epidemiol & Hlth Stat, Beijing 100069, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)