高级检索
当前位置: 首页 > 详情页

Pulmonary Nodule Classification Based on Heterogeneous Features Learning

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [a]School of Computer Science and Engineering, Beihang Beijing, China, 100191. [b]Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China. [c]Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK., School of Electrical Engineering and Computer Science, National University of Science and Technology, Islamabad (NUST), Pakistan. [d]School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
出处:
ISSN:

关键词: Pulmonary nodule classification lung cancer heterogeneous features multiple kernel learning

摘要:
Pulmonary cancer is one of the most dangerous cancers with a high incidence and mortality. An early accurate diagnosis and treatment of pulmonary cancer can observably increase the survival rates, where computer-aided diagnosis systems can largely improve the efficiency of radiologists. In this article, we propose a deep automated lung nodule diagnosis system based on three-dimensional convolutional neural network (3D-CNN) and support vector machine (SVM) with multiple kernel learning (MKL) algorithms. The system not only explores the computed tomography (CT) scans, but also the clinical information of patients like age, smoking history and cancer history. To extract deeper image features, a 34-layers 3D Residual Network (3D-ResNet) is employed. Heterogeneous features including the extracted image features and the clinical data are learned with MKL. The experimental results prove the effectiveness of the proposed image feature extractor and the combination of heterogeneous features in the task of lung nodule diagnosis.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:电子与电气 1 区 电信学
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 工程:电子与电气 1 区 电信学
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TELECOMMUNICATIONS
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [a]School of Computer Science and Engineering, Beihang Beijing, China, 100191.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)