高级检索
当前位置: 首页 > 详情页

Multi-dimensional data integration algorithm based on random walk with restart

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China [2]Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, People’s Republic of China [3]Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100069, People’s Republic of China [4]Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People’s Republicof China
出处:
ISSN:

关键词: Random walk with restart Multiplex network Multi-dimensional data integration Cancer subtyping

摘要:
BackgroundThe accumulation of various multi-omics data and computational approaches for data integration can accelerate the development of precision medicine. However, the algorithm development for multi-omics data integration remains a pressing challenge.ResultsHere, we propose a multi-omics data integration algorithm based on random walk with restart (RWR) on multiplex network. We call the resulting methodology Random Walk with Restart for multi-dimensional data Fusion (RWRF). RWRF uses similarity network of samples as the basis for integration. It constructs the similarity network for each data type and then connects corresponding samples of multiple similarity networks to create a multiplex sample network. By applying RWR on the multiplex network, RWRF uses stationary probability distribution to fuse similarity networks. We applied RWRF to The Cancer Genome Atlas (TCGA) data to identify subtypes in different cancer data sets. Three types of data (mRNA expression, DNA methylation, and microRNA expression data) are integrated and network clustering is conducted. Experiment results show that RWRF performs better than single data type analysis and previous integrative methods.ConclusionsRWRF provides powerful support to users to decipher the cancer molecular subtypes, thus may benefit precision treatment of specific patients in clinical practice.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 生物
小类 | 2 区 数学与计算生物学 3 区 生化研究方法 3 区 生物工程与应用微生物
最新[2025]版:
大类 | 4 区 生物学
小类 | 3 区 生物工程与应用微生物 4 区 生化研究方法 4 区 数学与计算生物学
JCR分区:
出版当年[2019]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 BIOCHEMICAL RESEARCH METHODS Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 BIOCHEMICAL RESEARCH METHODS Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)