高级检索
当前位置: 首页 > 详情页

Prediction of Pulmonary Function Parameters Based on a Combination Algorithm

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Chinese Acad Sci AIRCAS, Aerosp Informat Res Inst, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China [3]Chinese Acad Med Sci, Personalized Management Chron Resp Dis, Beijing 100190, Peoples R China [4]China Japan Friendship Hosp, Dept Resp Med, Beijing 100029, Peoples R China
出处:
ISSN:

关键词: combination algorithm support vector machines extreme gradient boosting one-dimensional convolutional neural network improved K-nearest neighbor

摘要:
Objective: Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function parameter prediction. Methods: We first established a system to collect volumetric capnography and then processed the data with a combination algorithm to predict pulmonary function parameters. The algorithm consists of three main parts: a medical feature regression structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) algorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN) algorithm. Results: The root mean square error (RMSE) of the pulmonary function parameters predicted by the combination algorithm was less than 0.39L and the R-2 was found to be greater than 0.85 through a ten-fold cross-validation experiment. Conclusion: Compared with the existing methods for predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate. At the same time, this algorithm uses specific processing structures for different features, and the interpretability of the algorithm is ensured while mining the feature depth information.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Chinese Acad Sci AIRCAS, Aerosp Informat Res Inst, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
通讯作者:
通讯机构: [1]Chinese Acad Sci AIRCAS, Aerosp Informat Res Inst, Beijing 100190, Peoples R China [2]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China [3]Chinese Acad Med Sci, Personalized Management Chron Resp Dis, Beijing 100190, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)