高级检索
当前位置: 首页 > 详情页

Synergistic Activity of Imipenem in Combination with Ceftazidime/Avibactam or Avibactam against Non-MBL-Producing Extensively Drug-Resistant Pseudomonas aeruginosa

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China [2]Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China [3]Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China [4]Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
出处:
ISSN:

关键词: ceftazidime-avibactam extensively drug-resistant Pseudomonas aeruginosa imipenem synergistic antibacterial activity antibiotic resistance

摘要:
Extensively drug-resistant Pseudomonas aeruginosa (XDRPA) infection is a significant public health threat due to a lack of effective therapeutic options. New beta-lactam-beta-lactamase inhibitor combinations, including ceftazidime-avibactam (CZA), have shown a high resistance rate to XDRPA. This study was therefore conducted to describe the underlying genomic mechanism of resistance for CZA nonsusceptible XDRPA strains that are non-metallo-beta-lactamase (MBL) producers as well as to examine synergism of CZA and other antipseudomonal agents. Furthermore, the synergistic antibacterial activity of the most effective antimicrobial combination against non-MBL-producing XDRPA was evaluated through in vitro experiments. The resistance profiles of 15 CZA-resistant XDRPA strains isolated from clinical specimens in China-Japan Friendship Hospital between January 2017 to December 2020 were obtained by whole-genome sequencing (WGS) analysis. MBL genes bla(IMP-1) and bla(IMP-45) were found in 2 isolates (2/15, 13.3%); the other underlying CZA-resistance mechanisms involved the decreased OprD porin (13/13), bla(AmpC) overex-pression (8/13) or mutation (13/13), and upregulated efflux pumps (13/13). CZA-imipenem (CZA-IPM) combination was identified to be the most effective against non-MBL-producing XDRPA according to the results of WGS analysis and combined antimicrobial susceptibility tests, with an approximately 16.62-fold reduction in MICs compared to CZA alone. Furthermore, the results of checkerboard analysis and growth curve displayed the synergistic antimicrobial activity of CZA and 1PM against non-MBL-producing XDRPA. Electron microscopy also revealed that CZA-IPM combination might lead to more cellular structural alterations than CZA or 1PM alone. This study suggested that the CZA-IPM combi- nation has potential for non-MBL-producing XDRPA with bla(AmpC) overexpression or mutation, decreased OprD porin, and upregulated efflux pumps. IMPORTANCE Handling the infections by extensively drug-resistant Pseudomonas aeruginosa (XDRPA) strains is challenging due to their complicated antibiotic resistance mechanisms in immunosuppressed patients with pulmonary diseases (e.g., cystic fibrosis, chronic obstructive pulmonary disease, and lung transplant), ventilator-associated pneumonia, and bloodstream infections. The current study suggested the potentiality of the ceftazidime-avibactam-imipenem combination against XDRPA with bla(AmpC) overexpression or mutation, decreased OprD porin, and/or upregulated efflux pumps. Our findings indicate the necessity of combined drug sensitivity tests against XDRPA and also lay a foundation for the development of prevention, control, and treatment strategies in XDRPA infections.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 生物学
小类 | 2 区 微生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 3 区 微生物学
JCR分区:
出版当年[2020]版:
Q1 MICROBIOLOGY
最新[2023]版:
Q2 MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
通讯作者:
通讯机构: [1]Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China [2]Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China [3]Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China [4]Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)