高级检索
当前位置: 首页 > 详情页

Nanomaterials: small particles show huge possibilities for cancer immunotherapy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]China Japan Friendship Hosp, Dept Urol, Beijing 100029, Peoples R China [2]Harbin Med Univ, Sch Basic Med, Harbin 150001, Peoples R China [3]China Med Univ, Dalian Univ Technol, Canc Hosp, Liaoning Canc Hosp & Inst,Dept Bone & Soft Tissue, 44 Xiaoheyan Rd, Shenyang 110042, Liaoning, Peoples R China
出处:
ISSN:

关键词: Nanomaterials Immunotherapy Tumor microenvironment Tumor immunosuppressive microenvironment Anti-tumor treatment

摘要:
With the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 2 区 生物工程与应用微生物 3 区 纳米科技
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
JCR分区:
出版当年[2020]版:
Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]China Japan Friendship Hosp, Dept Urol, Beijing 100029, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)