高级检索
当前位置: 首页 > 详情页

Diagnosis of pancreatic carcinoma based on combined measurement of multiple serum tumor markers using artificial neural network analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 中华系列

单位: [1]Capital Med Univ, Beijing Friendship Hosp, Dept Gen Surg, Beijing 100050, Peoples R China [2]Capital Med Univ, Inst Biomed Engn, Beijing 100069, Peoples R China
出处:
ISSN:

关键词: artificial neural network tumor markers pancreatic cancer Logistic regression

摘要:
Background Artificial neural network (ANN) has demonstrated the ability to assimilate information from multiple sources to enable the detection of subtle and complex patterns. In this research, we evaluated an ANN model in the diagnosis of pancreatic cancer using multiple serum markers. Methods In this retrospective analysis, 913 serum specimens collected at the Department of General Surgery of Beijing Friendship Hospital were analyzed for carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and carcinoembryonic antigen (CEA). The three tumor marker values were used as inputs into an ANN and randomized into a training set of 658 (70.31% were malignant) and a test set of the remaining 255 samples (70.69% were malignant). The samples were also evaluated using a Logistic regression (LR) model. Results The ANN-derived composite index was superior to each of the serum tumor markers alone and the Logistic regression model. The areas under receiver operating characteristic curves (AUROC) was 0.905 (95% confidence Interval (Cl) 0.868-0.942) for ANN, 0.812 (95% Cl 0.762-0.863) for the Logistic regression model, 0.845 (95% Cl 0.798-0.893) for CA19-9, 0.795 (95% Cl 0.738-0.851) for CA125, and 0.800 (95% Cl 0.746-0.854) for CEA. ANN analysis of multiple markers yielded a high level of diagnostic accuracy (83.53%) compared to LR (74.90%). Conclusion The performance of ANN model in the diagnosis of pancreatic cancer is better than the single tumor marker and LR model.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:内科
JCR分区:
出版当年[2012]版:
Q3 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2012版] 出版当年五年平均[2008-2012] 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者单位: [1]Capital Med Univ, Beijing Friendship Hosp, Dept Gen Surg, Beijing 100050, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)