高级检索
当前位置: 首页 > 详情页

Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Capital Med Univ, Sch Biomed Engn, Beijing 100069, Peoples R China [2]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: Artificial neural network Logistic regression Lung nodule Diagnostic performance Comparison

摘要:
Purpose: To compare the diagnostic performances of artificial neural networks (ANNs) and multivariable logistic regression (LR) analyses for differentiating between malignant and benign lung nodules on computed tomography (CT) scans. Methods: This study evaluated 135 malignant nodules and 65 benign nodules. For each nodule, morphologic features (size, margins, contour, internal characteristics) on CT images and the patient's age, sex and history of bloody sputum were recorded. Based on 200 bootstrap samples generated from the initial dataset, 200 pairs of ANN and LR models were built and tested. The area under the receiver operating characteristic (ROC) curve, Hosmer-Lemeshow statistic and overall accuracy rate were used for the performance comparison. Results: ANNs had a higher discriminative performance than LR models (area under the ROC curve: 0.955 +/- 0.015 (mean +/- standard error) and 0.929 +/- 0.017, respectively, p < 0.05). The overall accuracy rate for ANNs (90.0 +/- 2.0%) was greater than that for LR models (86.9 +/- 1.6%, p < 0.05). The Hosmer-Lemeshow statistic for the ANNs was 8.76 +/- 6.59 vs. 6.62 +/- 4.03 (p > 0.05) for the LR models. Conclusions: When used to differentiate between malignant and benign lung nodules on CT scans based on both objective and subjective features, ANNs outperformed LR models in both discrimination and clinical usefulness, but did not outperform for the calibration. (c) 2012 Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2011]版:
大类 | 2 区 工程技术
小类 | 1 区 运筹学与管理科学 2 区 计算机:人工智能 2 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气 2 区 运筹学与管理科学
JCR分区:
出版当年[2010]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2010版] 出版当年五年平均[2006-2010] 出版前一年[2009版] 出版后一年[2011版]

第一作者:
第一作者单位: [1]Capital Med Univ, Sch Biomed Engn, Beijing 100069, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)