高级检索
当前位置: 首页 > 详情页

LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China [2]Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA [3]Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China [4]Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China [5]Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Arterial calcification VSMCs lncRNA H19 RUNX2 MAPK

摘要:
Arterial calcification (AC) is mainly caused by osteoblast phenotypic transition of vascular smooth muscle cells (VSMCs). Long noncoding RNA H19 (lncRNA H19) has attracted increasingly attention because of their transcriptional regulation crucial potency. We reported that lncRNA H19 expression is up-regulated after VSMCs transition. Thus, we aim to study the role of H19 and the molecular mechanisms in VSMCs transition. To determine the expression of H19 in calcified VSMCs, we induced VSMCs calcification with 10 mM beta-glycerophosphate. By qPCR and Western Blot analysis, we found that the expression of lncRNA H19, Runx2 and OSX were all highly increased in calcified VSMCs compared with normal VSMCs, while the expression of VSMCs differentiation markers, SM22-alpha and alpha-SMA, were significantly decreased. SiRNA study showed that knockdown of lncRNA H19 can decrease VSMCs calcification and Runx2 expression. We further validated that lncRNA H19 promoted VSMCs calcification via the p38 MAPK and ERK1/2 signal transduction pathways. As a conclusion, the present study showed that IncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway. This finding not only reveal a novel function of lncRNA H19, but also provides a new opinion on the role of lncRNA H19 which participant in the Runx2 regulatory pathway in AC and can be a new indication for the diagnosis and treatment of AC at an early time.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
JCR分区:
出版当年[2018]版:
Q2 ONCOLOGY Q2 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL Q4 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2018版] 出版当年五年平均[2014-2018] 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China [2]Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
通讯作者:
通讯机构: [3]Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of Education, Beijing, China [*1]Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Anzhenli Avenue, Chao Yang District, Beijing 100029, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)