高级检索
当前位置: 首页 > 详情页

Role of Junction-Mediating and Regulatory Protein in the Pathogenesis of Glucocorticoid-Induced Endothelial Cell Lesions

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Peking University China–Japan Friendship School of Clinical Medicine, [2]Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, [3]Graduate School of Peking Union Medical College [4]Beijing University of Chinese Medicine, Beijing, China
出处:
ISSN:

关键词: Endothelial cell Glucocorticoid Junction-mediating and regulatory protein (JMY) Osteonecrosis of the femoral head Pathogenesis

摘要:
Objective Nontraumatic osteonecrosis of the femoral head (ONFH) is one of the most common diseases in orthopaedics. The damage to vascular endothelial (VE) cells caused by glucocorticoids (GC) has been reported as a possible mechanism of pathogenesis for ONFH. Junction-mediating and regulatory protein (JMY), originally identified as a p53 coactivator, plays prominent roles in the DNA damage response and in cell motility. This study aimed to discover the role of JMY in the pathogenesis of GC-induced endothelial cell lesions. Methods High-throughput RNA sequencing was performed to identify the differentially expressed genes between GC-treated human umbilical vein endothelial cells (HUVEC) and control cells. JMY knockdown and overexpressing HUVEC lines were treated with GC. Cell proliferation was examined with a survival cell count assay (Cell Counting Kit-8, CCK-8); cell apoptosis was measured by flow cytometry; a scarification assay was used to detect the capability of cell migration; a Transwell chamber assay was done to detect the cell motility . Differential expression of cell protein was detected by western blot. Results A total of 1561 differential genes were obtained through transcription sequencing, of which 789 mRNA were upregulated and 772 mRNA were downregulated in the GC-treated HUVEC compared with the control cells. CCK-8 assay results showed that: without GC treatment, overexpression or knockdown of JMY did not affect the proliferation activity of HUVEC. In the presence of GC treatment, the proliferation activity of HUVEC in the JMY knockdown group was significantly higher than that in the control group (P < 0.01). The proliferation activity of HUVEC in the overexpression JMY group was significantly lower than that in the control group (P < 0.01). The results of flow cytometry showed that without GC treatment, overexpression or knockdown of JMY did not affect the apoptosis proportion of HUVEC. With GC treatment, the apoptosis proportion of HUVEC in the JMY knockdown group was significantly lower than that in the control group (P < 0.01), and the apoptosis proportion of HUVEC in the overexpression JMY group was significantly higher than that in the control group (P < 0.01). Western blot results showed that with GC treatment, the JMY expression level of HUVEC increased with the reaction time. Moreover, the distribution of JMY was mainly concentrated in the nucleus. The expression level of Bax also increased with the reaction time. With GC treatment, overexpression of JMY could significantly increase the expression of Bax in HUVEC. JMY knockdown could reduce the expression of Bax in HUVEC. In the absence of GC treatment, HUVEC overexpression or knockdown of JMY did not affect the expression of Bax. The results of scarification and Transwell chamber assays showed that: without GC treatment, JMY knockdown could significantly decrease the cell motility and increase the expression level of VE-cadherin in HUVEC; with GC treatment, JMY knockdown in HUVEC had lower cell motility compared with the control group (P < 0.01). Conclusion Glucocorticoids can induce the HUVEC apoptosis, and reduce its proliferation, cell motility. Our results mainly confirmed the role of JMY in the pathogenesis of GC-inducing lesions in HUVEC. GC act on HUVEC, inducing cell damage. Following the event of cell damage, JMY levels upregulate in the nucleus to induce transcription of Bax, triggering apoptosis. JMY can also regulate HUVEC motility via its regulation of VE-cadherin levels.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 2 区 骨科
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 骨科
JCR分区:
出版当年[2018]版:
Q3 ORTHOPEDICS
最新[2023]版:
Q2 ORTHOPEDICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2018版] 出版当年五年平均[2014-2018] 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Peking University China–Japan Friendship School of Clinical Medicine,
通讯作者:
通讯机构: [1]Peking University China–Japan Friendship School of Clinical Medicine, [2]Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, [*1]Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, Peking University China–Japan Friendship School of Clinical Medicine, China–Japan Friendship Hospital, 2 Yinghuadong Road, Chaoyang District, Beijing, China 100029
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)