高级检索
当前位置: 首页 > 详情页

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Faculty of Information Technology, Beijing University of Technology,Beijing, China [2]Department of Radiology, Beijing Friendship Hospital, Capital Medical University,Beijing, China
出处:
ISSN:

关键词: Multi-parametric MRI data fusion transfer learning deep learning hepatocellular carcinoma differentiation

摘要:
To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847 +/- 0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981 +/- 0.002, 0.981 +/- 0.002, 0.991 +/- 0.007 and 0.999 +/- 0.0008, respectively.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 工程技术
小类 | 4 区 计算机:信息系统 4 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 电信学
JCR分区:
出版当年[2017]版:
Q4 TELECOMMUNICATIONS Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:
Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Q4 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2017版] 出版当年五年平均[2013-2017] 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Faculty of Information Technology, Beijing University of Technology,Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)