高级检索
当前位置: 首页 > 详情页

Regulation of glucocorticoid-related genes and receptors/regulatory enzyme expression in intrauterine growth restriction filial rats

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
出处:
ISSN:

关键词: Intrauterine growth restriction Glucocorticoid Glucocorticoid receptor 11 beta-hydroxysteroid dehydrogenase 2

摘要:
Aims: This study aims to explore factors that influence glucocorticoid (GC)-related genes and receptors/regulatory enzyme expression in intrauterine growth restriction (IUGR) filial rats. Main methods: An IUGR animal model was established by starvation, and brain tissue was removed after birth. Affymetrix Rat Gene 2.0 ST microarray was used to screen different expressions of GC-related genes in IUGR brain tissues. The mRNA and protein levels of related genes were validated by RT-PCR and western blot. Key findings: Results of the microarray revealed that the expression of 11 beta-Hsd2 was significantly downregulated in the IUGR group compared to the control group. Although Nr3c1 exhibited an overexpression trend in the IUGR group, there were no significant differences between the two groups. Further analysis suggests that the 11 beta-Hsd2 was negatively correlated to Nr3c1. In the transcription level, the expression level of 11 beta-Hsd2 mRNA decreased in the IUGR group, while the mRNA expression level of Nr3c1 significantly increased. In the protein level, the expression of 11 beta-Hsd2 significantly decreased in the IUGR group; while the expression of Nr3c1 significantly increased in the IUGR group. However, there were no significant differences in Nr3c1 phosphorylated at S211 and S266 between the IUGR and control groups. Significance: The expression of Nr3c1 was mainly regulated by 11 beta-Hsd2, which could significantly inhibit its expression in IUGR rats. Phosphorylation on site S211 was the major activated form of Nr3c1. We speculate that IUGR brain damage was caused by excessive amounts of GC due to significant activation by Nr3c1. (C) 2016 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 3 区 医学
小类 | 3 区 药学 4 区 医学:研究与实验
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 药学 3 区 医学:研究与实验
JCR分区:
出版当年[2014]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2014版] 出版当年五年平均[2010-2014] 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者单位: [1]Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)