单位:[1]Peking Univ, Basic Med Coll, Dept Physiol & Pathophysiol, Sch Basic Med Sci, Beijing 100191, Peoples R China[2]Minist Educ, Key Lab Mol Cardiovasc Sci, Beijing, Peoples R China[3]China Japan Friendship Hosp, Dept Cardiol, Beijing, Peoples R China[4]NYU, Sch Med, Dept Orthopaed Surg, New York, NY 10003 USA[5]NYU, Sch Med, Dept Cell Biol, New York, NY 10003 USA[6]Kings Coll London, British Heart Fdn Ctr, Div Cardiovasc, London, England
Rational: Vascular smooth muscle cells (VSMCs) switching from a contractile/differentiated to a synthetic/dedifferentiated phenotype has an essential role in atherosclerosis, postangioplastic restenosis and hypertension. However, how normal VSMCs maintain the differentiated state is less understood. Objective: We aimed to indentify the effect of cartilage oligomeric matrix protein (COMP), a normal vascular extracellular matrix, on modulation of VSMCs phenotype. Methods and Results: We demonstrated that COMP was associated positively with the expression of VSMC differentiation marker genes during phenotype transition. Knockdown of COMP by small interfering (si) RNA favored dedifferentiation. Conversely, adenoviral overexpression of COMP markedly suppressed platelet-derived growth factor-BB-elicited VSMC dedifferentiation, characterized by altered VSMC morphology, actin fiber organization, focal adhesion assembly, and the expression of phenotype-dependent markers. Whereas alpha(7) integrin coimmunoprecipitated with COMP in normal rat VSMCs and vessels, neutralizing antibody or siRNA against alpha(7) integrin inhibited VSMC adhesion to COMP, which indicated that alpha(7)beta(1) integrin is a potential receptor for COMP. As well, blocking or interference by siRNA of alpha(7) integrin completely abolished the effect of COMP on conserving the contractile phenotype. In accordance, ectopic adenoviral overexpression of COMP greatly retarded VSMC phenotype switching, rescued contractility of carotid artery ring, and inhibited neointima formation in balloon-injured rats. Conclusions: Our data suggest that COMP is essential for maintaining a VSMC contractile phenotype and the protective effects of COMP are mainly mediated through interaction with alpha(7)beta(1) integrin. Investigations to identify the factors affecting the expression and integrity of COMP may provide a novel therapeutic target for vascular disorders. (Circ Res. 2010;106:514-525.)
基金:
National Natural Science Foundation of the People's Republic of ChinaNational Natural Science Foundation of China (NSFC) [30670849, 30870993, 30821001, 30770865, 2006CB503802]; Natural Science Foundation of BeijingBeijing Natural Science Foundation; Ministry of Education of ChinaMinistry of Education, China; Chinese Ministry of EducationMinistry of Education, China [307001]; Chang Jiang Scholars ProgramProgram for Changjiang Scholars & Innovative Research Team in University (PCSIRT)
通讯机构:[1]Peking Univ, Basic Med Coll, Dept Physiol & Pathophysiol, Sch Basic Med Sci, Beijing 100191, Peoples R China[2]Minist Educ, Key Lab Mol Cardiovasc Sci, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
Wang Li,Zheng Jingang,Du Yaoyao,et al.Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With alpha(7)beta(1) Integrin[J].CIRCULATION RESEARCH.2010,106(3):514-525.doi:10.1161/CIRCRESAHA.109.202762.
APA:
Wang, Li,Zheng, Jingang,Du, Yaoyao,Huang, Yaqian,Li, Jing...&Wang, Xian.(2010).Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With alpha(7)beta(1) Integrin.CIRCULATION RESEARCH,106,(3)
MLA:
Wang, Li,et al."Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With alpha(7)beta(1) Integrin".CIRCULATION RESEARCH 106..3(2010):514-525