高级检索
当前位置: 首页 > 详情页

Automated location of thyroid nodules in ultrasound images with improved YOLOV3 network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]College of Biomedical Engineering, Sichuan University, Chengdu, China [2]China-Japan Friendship Hospital, Beijing, China [3]West China Hospital of Sichuan University, Chengdu, China [4]Highong Intellimage Medical Technology Tianjin Co., Ltd, Tianjin, China
出处:
ISSN:

关键词: Automatic localization thyroid nodules deep learning ultrasound images

摘要:
BACKGROUND: Thyroid ultrasonography is widely used to diagnose thyroid nodules in clinics. Automatic localization of nodules can promote the development of intelligent thyroid diagnosis and reduce workload of radiologists. However, besides the ultrasound image has low contrast and high noise, the thyroid nodules are diverse in shape and vary greatly in size. Thus, thyroid nodule detection in ultrasound images is still a challenging task. OBJECTIVE: This study proposes an automatic detection algorithm to locate nodules in B ultrasound images and Doppler ultrasound images. This method can be used to screen thyroid nodules and provide a basis for subsequent automatic segmentation and intelligent diagnosis. METHODS: We develop and optimize an improved YOLOV3 model for detecting thyroid nodules in ultrasound images with B-mode and Doppler mode. Improvements include (1) using the high-resolution network (HRNet) as the basic network for gradually extracting high-level semantic features to reduce the missed detection and misdetection, (2) optimizing the loss function for single target detection like nodules, and (3) obtaining the anchor boxes by clustering the candidate frames of real nodules in the dataset. RESULTS: The experimental results of applying to 8000 clinical ultrasound images show that the new method developed and tested in this study can effectively detect thyroid nodules. The method achieves 94.53% mean precision and 95.00% mean recall. CONCLUTIONS: The study demonstrates a new automated method that enables to achieve high detection accuracy and effectively locate thyroid nodules in various ultrasound images without any user interaction, which indicates its potential clinical application value for the thyroid nodule screening.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 仪器仪表 4 区 光学 4 区 物理:应用
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 仪器仪表 4 区 光学 4 区 物理:应用
JCR分区:
出版当年[2019]版:
Q3 PHYSICS, APPLIED Q3 INSTRUMENTS & INSTRUMENTATION Q4 OPTICS
最新[2023]版:
Q3 INSTRUMENTS & INSTRUMENTATION Q3 OPTICS Q3 PHYSICS, APPLIED

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]College of Biomedical Engineering, Sichuan University, Chengdu, China
通讯作者:
通讯机构: [1]College of Biomedical Engineering, Sichuan University, Chengdu, China [*1]College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)