高级检索
当前位置: 首页 > 详情页

Feasibility investigation of logarithmic Nakagami parametric imaging in recovering underestimated perfusion metrics of DCEUS in the uneven acoustic field

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Peoples R China [2]Alliance Franco Chinoise, Montreal, PQ, Canada [3]Captial Med Univ, Dept Oncol, Beijing Friendship Hosp, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: contrast-enhanced ultrasound focused acoustic field hemodynamic Nakagami parameter

摘要:
Purpose Owing to acoustic-pressure dependence, amplitudes of backscattered-echoes of encapsulated microbubbles (MBs) are unavoidably regulated by an uneven acoustic field, resulting in the misestimation of hemodynamics in conventional amplitude-coding dynamic contrast-enhanced ultrasound (DCEUS) with focused pulse transmission. This study aimed to investigate the feasibility and performance of Nakagami statistical-feature parametric imaging to recover the above misestimation. Methods Logarithmic Nakagami parameter (m)-coding DCEUS scheme was investigated via simulation and in vitro MB phantoms as well as in vivo kidney-perfusion experiments of four rabbits in the uneven acoustic fields with two different focal depths. In vivo tissue artifacts for m estimation were suppressed by pulse-inversion second-harmonic imaging and its robustness was enhanced by multiscale moment-estimation strategy. Time-Nakagami-m curves and the corresponding perfusion metrics of intensity and volume were calculated from the logarithmic m-coding DCEUS images within the prefocal and focal regions. These curves and metrics were further compared with the perfusion curves and metrics estimated from the conventional amplitude-coding images within the same regions. Results Compared with amplitudes of nonlinear scattering MB echoes, their logarithmic m values were relatively independent of the changes in acoustics pressures. Compared with the fixed-scale moment-estimation, the perfusion intensity estimated from logarithmic m-coding DCEUS scheme using multiscale statistical moment-estimation had smaller differences between the prefocal and focal regions. The differences of perfusion intensity induced by an uneven acoustic field decreased to 3.47% +/- 1.58 %. The differences decreased by the logarithmic m-coding DCEUS scheme were further regulated by threshold values of m estimation. Conclusions The logarithmic m-coding DCEUS scheme could recover the underestimated MB backscattered-echoes and the misestimated perfusion intensity induced by the uneven acoustic field. The scheme had the potential to weaken the limitation of microvasculature identification and hemodynamic characterization marked by MBs within tissues or tumors in the uneven acoustic field.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2020]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Peoples R China
通讯作者:
通讯机构: [1]Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Peoples R China [3]Captial Med Univ, Dept Oncol, Beijing Friendship Hosp, Beijing 100050, Peoples R China [*1]Department of Oncology, Beijing Friendship Hospital Captial Medical Unviersity, Beijing 100050, China [*2]Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’ an Jiaotong University, Xi’ an 710049, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)