高级检索
当前位置: 首页 > 详情页

Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson's disease models in vitro and vivo

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratoryof Laboratory Medicine, Ministry of Education, School of Laboratory Medicineand Life Sciences, Wenzhou Medical University, Chashan University Town,Northern Zhongshan Road, Wenzhou, Zhejiang 325035, People’s Republicof China [2]Department of Internal Neurology, Beijing Friendship Hospital,Capital Medical University, Beijing 100050, China
出处:
ISSN:

关键词: Parkinson's disease Rotenone Yeast NDI1 Mitochondrial complex I Recombinant adeno-associated virus (rAAV) Gene therapy

摘要:
Purpose Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction. Method Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement. Results NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of alpha-synuclein and pS129 alpha-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. Conclusion Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学 2 区 医学:研究与实验
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学 2 区 医学:研究与实验
JCR分区:
出版当年[2020]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratoryof Laboratory Medicine, Ministry of Education, School of Laboratory Medicineand Life Sciences, Wenzhou Medical University, Chashan University Town,Northern Zhongshan Road, Wenzhou, Zhejiang 325035, People’s Republicof China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)