高级检索
当前位置: 首页 > 详情页

Detection of Healthy and Diseased Pylorus Natural Anatomical Center with Convolutional Neural Network Classification and Filters

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Univ Posts & Telecommun, Sch Automat, Med Robot Lab, Beijing 100876, Peoples R China [2]Tsinghua Univ, Sch Med, Beijing 100191, Peoples R China [3]Beihang Univ, Key Lab Biomech & Mechanobiol, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn,Minist Educ, Beijing 100083, Peoples R China [4]Soochow Univ, Robot & MicroSyst Ctr, Sch Mech Engn, Suzhou 215021, Peoples R China [5]Capital Med Univ, Beijing Friendship Hosp, Dept Gastroenterol, Beijing 100050, Peoples R China [6]Peking Univ Third Hosp, Gastroenterol Dept, Beijing 100191, Peoples R China [7]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
出处:
ISSN:

关键词: Center detection Gastrointestinal robot Image guidance Natural anatomical structures Pylorus Robot autonomy

摘要:
Purpose The detection of pylorus, a natural gastrointestinal (GI) anatomical structure, is one of the fundamental techniques that enables a high-autonomy digestive tract robot to move from the stomach to the duodenum. The pyloric center is the optimal position for passing pylorus from the soft-tissue protection standpoint. Thus, detection of the pylorus center should be investigated further in view of its indispensability for a high-autonomy GI robot. However, to the best of our knowledge, no result of pylorus center detection has been published thus far. Methods In this paper, we have developed a pylorus center detection method using CNN classification, Sobel and Laplace operators. The proposed algorithm's effectiveness is demonstrated by the precise center detection of six types of healthy pylori and six settings of diseased pylori. Results The average detection accuracy of the pylorus center is 22.33 pixels, which corresponds to a relative error of 2.33% when compared to 960 pixels, which corresponds to the diagonal length of an endoscopic image. A single image takes an average of 26.51 ms to process. Conclusion The clinical feasibility of the algorithm for real-time pylorus center tracking is established. The developed algorithm enables GI robots to autonomously locate and pass the pylorus.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 工程技术
小类 | 4 区 工程:生物医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q4 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q4 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Univ Posts & Telecommun, Sch Automat, Med Robot Lab, Beijing 100876, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)