高级检索
当前位置: 首页 > 详情页

Computational methods, databases and tools for synthetic lethality prediction

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Tsinghua Univ, Sch Med, Beijing, Peoples R China [2]Inst Hlth Serv & Transfus Med, Dept Bioinformat, Beijing 100850, Peoples R China [3]Peking Univ, Beijing, Peoples R China [4]Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing, Peoples R China [5]Tianjin Univ, Acad Med Engn & Translat Med, Tianjin, Peoples R China [6]Capital Med Univ, Beijing Friendship Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: synthetic lethality computational methods deep learning machine learning

摘要:
Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版
大类 | 2 区 生物学
小类 | 2 区 生化研究方法 2 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 1 区 数学与计算生物学 2 区 生化研究方法
JCR分区:
出版当年[2020]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Tsinghua Univ, Sch Med, Beijing, Peoples R China [2]Inst Hlth Serv & Transfus Med, Dept Bioinformat, Beijing 100850, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [2]Inst Hlth Serv & Transfus Med, Dept Bioinformat, Beijing 100850, Peoples R China [*1]Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)