高级检索
当前位置: 首页 > 详情页

Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Shenzhen Univ, Hlth Sci Ctr, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Peoples R China [2]Heping Hospl, Affiliated Changzhi Med Col, Dept Med Imaging, 10 0 038, Changzhi 100038, Peoples R China [3]China Japan Friendship Hosp, Dept Radiol, 10 0 029, Beijing 100029, Peoples R China
出处:
ISSN:

关键词: Lymph node metastasis Multi-source domain adaptation Feature pyramid network Domain selection Graph convolutional network

摘要:
Preoperative prediction of lymph node (LN) metastasis based on computed tomography (CT) scans is an important task in gastric cancer, but few machine learning-based techniques have been proposed. While multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. To tackle the above issue, we propose a novel multi-source domain adaptation framework for this diagnosis task, which not only considers domain-invariant and domain-specific features, but also achieves the imbalanced knowledge transfer and class-aware feature alignment across domains. First, we develop a 3D improved feature pyramidal network (i.e., 3D IFPN) to extract common multi-level features from the high-resolution 3D CT images, where a feature dynamic transfer (FDT) module can promote the network's ability to recognize the small target (i.e., LN). Then, we design an unsupervised domain selective graph convolutional network (i.e., UDS-GCN), which mainly includes three types of components: domain-specific feature extractor, domain selector and class-aware GCN classifier. Specifically, multiple domain-specific feature extractors are employed for learning domain-specific features from the common multi-level features generated by the 3D IFPN. A domain selector via the optimal transport (OT) theory is designed for controlling the amount of knowledge transferred from source domains to the target domain. A class-aware GCN classifier is developed to explicitly enhance/weaken the intra-class/inter-class similarity of all sample pairs across domains. To optimize UDS-GCN, the domain selector and the class-aware GCN classifier provide reliable target pseudo-labels to each other in the iterative process by collaborative learning. The extensive experiments are conducted on an in-house CT image dataset collected from four medical centers to demonstrate the efficacy of our proposed method. Experimental results verify that the proposed method boosts LN metastasis diagnosis performance and outperforms state-of-the-art methods. Our code is publically available at https://github.com/infinite-tao/LN _ MSDA .(c) 2022 Elsevier B.V. All rights reserved.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
JCR分区:
出版当年[2020]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Shenzhen Univ, Hlth Sci Ctr, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)