高级检索
当前位置: 首页 > 详情页

Deeply supervised vestibule segmentation network for CT images with global context-aware pyramid feature extraction

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Faculty of Information Technology, Beijing University of Technology, Beijing, China [2]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: active contour with elastic (ACE) loss deep supervision global context-aware pyramid feature extraction vestibule segmentation

摘要:
Accurate vestibule segmentation for CT images is of great significance for the clinical diagnosis of congenital ear malformations and cochlear implant. However, it is still a challenging task due to extremely small size and irregular shape of vestibule. Here, a vestibule segmentation network for CT images is proposed under the basic encoder-decoder framework. Firstly, a residual block based on channel attention mechanism, named Res-CA block, is designed to guide the network to enhance the important features for the segmentation tasks while suppressing the irrelevant ones. And then, a global context-aware pyramid feature extraction (GCPFE) module is proposed to capture multi-receptive-field global context information. Finally, active contour with elastic (ACE) loss function is adopted to guide network learning more detailed information of the boundary. Furthermore, deep supervision (DS) mechanism is employed to locate the boundaries finely, improving the robustness of the network. The experiments are conducted on the self-established VestibuleDataset and UHRCT-Dataset, as well as publicly available retinal dataset, namely DRIVE, to comprehensively verify the robustness and generalization capability of the proposed segmentation network. The experimental results show that the proposed network can achieve a superior performance.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 工程:电子与电气 4 区 成像科学与照相技术
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 工程:电子与电气 4 区 成像科学与照相技术
JCR分区:
出版当年[2020]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2023]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Faculty of Information Technology, Beijing University of Technology, Beijing, China
通讯作者:
通讯机构: [1]Faculty of Information Technology, Beijing University of Technology, Beijing, China [*1]Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)