高级检索
当前位置: 首页 > 详情页

Vestibule segmentation from CT images with integration of multiple deep feature fusion strategies

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [a]Faculty of Information Technology, Beijing University of Technology, Beijing, China [b]School of Computer Science, Faculty of Engineering, University of Sydney, Sydney, Australia [c]Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: CT images Vestibule segmentation Feature fusion

摘要:
Vestibule Segmentation is of great significance for the clinical diagnosis of congenital ear malformations and cochlear implants. However, automated segmentation is a challenging task due to the tiny size, blur boundary, and drastic changes in shape and size. In this paper, a vestibule segmentation method from CT images has been proposed specifically, which exploits different deep feature fusion strategies, including convolutional feature fusion for different receptive fields, channel attention based feature channel fusion, and encoder-decoder feature fusion. The experimental results on the self-established vestibule segmentation dataset show that, compared with several state-of-the-art methods, our method can achieve superior segmentation accuracy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [a]Faculty of Information Technology, Beijing University of Technology, Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)