高级检索
当前位置: 首页 > 详情页

Labyrinth net: A robust segmentation method for inner ear labyrinth in CT images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China [2] Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
出处:
ISSN:

关键词: Inner ear labyrinth segmentation Active learning Medical image segmentation Temporal bone

摘要:
The inner ear labyrinth is a combined sensory organ of hearing and balance, which is surrounding the bony cavity located in the petrous temporal bone. The structure of the inner ear labyrinth plays an important role in otology research and clinic diagnosis of ear diseases. Automatic and accurate segmentation of the inner ear labyrinth is a foundation of computer-aided temporal bone quantitively measurements and diagnosis. The inner ear labyrinth is characterized by its complex morphology, small size, and high labeling cost, which brings challenges for deep learning-based automatic segmentation methods. In this paper, we propose a robust segmentation method for the labyrinth in temporal bone CT images via multi-model inconsistency. In the active learning paradigm, we design an informative sample assessment strategy for screening informative unlabeled data. An observer network is introduced to confirm the confidence of segmented voxels based on the inconsistency to a backbone segmentation network. To further improve the efficiency of the sample screening, a maximum-connected probability map (MCP-Map) is introduced to eliminate the influence of outliers in the result of coarse segmentation. Experimental results show that our methods have the highest labeling efficiency and the lowest labeling cost compared with several existing active learning methods. With 40% labeled reduce, our method achieved 95.67% in Dice Similarity Coefficient (DSC), which is the state-of-the-art in the labyrinth segmentation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 2 区 生物学 2 区 数学与计算生物学 3 区 计算机:跨学科应用 3 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 BIOLOGY Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)