高级检索
当前位置: 首页 > 详情页

Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China [2]Beijing Friendship Hosp, Dept Ophthalmol, Beijing 100050, Peoples R China [3]Zhejiang Univ, Affiliated Hosp 2, Med Coll, Hangzhou 310027, Zhejiang, Peoples R China [4]Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China [5]Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
出处:
ISSN:

关键词: Image segmentation Transformers Image edge detection Feature extraction Retinal vessels Decoding Blood vessels Deep-shallow hierarchical feature fusion (dsHFF) dual local attention (DLA) global transformer (GT) medical image analysis retinal vessel segmentation

摘要:
Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:人工智能 1 区 计算机:控制论
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:人工智能 1 区 计算机:控制论
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, CYBERNETICS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 AUTOMATION & CONTROL SYSTEMS
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, CYBERNETICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)