高级检索
当前位置: 首页 > 详情页

Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing 100044, Peoples R China [2]East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China [3]Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China [4]Syracuse Univ, Dept Math, New York, NY 13244 USA [5]China Japan Friendship Hosp, Dept Pathol, Beijing 100029, Peoples R China
出处:
ISSN:

关键词: Image segmentation Histopathology Frequency modulation Pipelines Hafnium Image color analysis Feature extraction Multi-modality histopathology image multi-target domain adaptation cross-frequency feature transfer bidirectional cross-domain boosting

摘要:
Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing 100044, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)