高级检索
当前位置: 首页 > 详情页

Fast Classification of Thyroid Nodules with Ultrasound Guided-Fine Needle Biopsy Samples and Machine Learning

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ 预警期刊

单位: [1]China Japan Friendship Hosp, Dept Pathol, Beijing 100029, Peoples R China [2]Shimadzu Co Ltd, China Innovat Ctr, Beijing 100020, Peoples R China
出处:
ISSN:

关键词: thyroid nodules fine needle aspiration biopsy machine learning probe electrospray ionization multilayer perceptron

摘要:
Featured Application Malignant and benign thyroid nodules classification. A rapid classification method was developed for the malignant and benign thyroid nodules with ultrasound guided-fine needle aspiration biopsy (FNAB) samples. With probe electrospray ionization mass spectrometry, the mass-scan data of FNAB samples were used as datasets for machine learning. The patients were marked as malignant (98 patients), benign (110 patients) or undetermined (42 patients) by experienced doctors in terms of ultrasound, the B-Raf (BRAF) gene, and cytopathology inspections. Pairwise coupling was performed on 163 ions to generate 3630 ion ratios as new features for classifier training. With the new features, the performance of the multilayer perception (MLP) classifier is much better than that with the 163 ions as features directly. After training, the accuracy of the MLP classifier is as high as 92.0%. The accuracy of the single-blind test is 82.4%, which proved the good generalization ability of the MLP classifier. The overall concordance is 73.0% between prediction and six-month follow-up for patients in the undetermined group. Especially, the classifier showed high accuracy for the undetermined patients with suspicious for papillary carcinoma diagnosis (90.9%). In summary, the machine learning method based on FNAB samples has potential for real clinical applications.

语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 工程技术
小类 | 4 区 化学综合 4 区 工程:综合 4 区 材料科学:综合 4 区 物理:应用
最新[2025]版:
大类 | 4 区 综合性期刊
小类 | 4 区 化学:综合 4 区 工程:综合 4 区 材料科学:综合 4 区 物理:应用
JCR分区:
出版当年[2020]版:
Q2 PHYSICS, APPLIED Q2 ENGINEERING, MULTIDISCIPLINARY Q3 CHEMISTRY, MULTIDISCIPLINARY Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
最新[2023]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q2 CHEMISTRY, MULTIDISCIPLINARY Q2 PHYSICS, APPLIED Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]China Japan Friendship Hosp, Dept Pathol, Beijing 100029, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)