高级检索
当前位置: 首页 > 详情页

A Multimodality-Contribution-Aware TripNet for Histologic Grading of Hepatocellular Carcinoma

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China [2]Capital Univ Med Sci, Beijing Friendship Hosp, Beijing 100050, Peoples R China
出处:
ISSN:

关键词: Magnetic resonance imaging Lesions Medical diagnostic imaging Training Task analysis Feature extraction Tumors Noninvasive diagnosis histologic grading of hepatocellular carcinoma multimodality-contribution-aware attention weighting multimodality fusion small-shot learning

摘要:
Hepatocellular carcinoma (HCC) is a type of primary liver malignant tumor with a high recurrence rate and poor prognosis even undergoing resection or transplantation. Accurate discrimination of the histologic grades of HCC plays a critical role in the management and therapy of HCC patients. In this paper, we discuss a deep learning-based diagnostic model for HCC histologic grading with multimodal Magnetic Resonance Imaging (MRI) images to overcome the problem of limited well-annotated data and extract the discriminated fusion feature referring to the clinical diagnosis experience of radiologists. Accordingly, we propose a novel Multimodality-Contribution-Aware TripNet (MCAT) based on the metric learning and the attention-aware weighted multimodal fusion. The novelty of the method lies in the multimodality small-shot learning architecture designation and the multimodality adaptive weighted computing scheme. The comprehensive experiments are done on the clinic dataset with the well-annotation of lesion location by the professional radiologist. The experimental results show that our proposed MCAT is not only able to achieve acceptable quantitative measuring of HCC histologic grading based on the MRI sequences with small cases but also outperforms previous models in HCC histologic grading, reaching an accuracy of 84 percent, a sensitivity of 87 percent and precision of 89 percent.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 3 区 生化研究方法 4 区 计算机:跨学科应用 4 区 数学跨学科应用 4 区 统计学与概率论
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生化研究方法 3 区 数学跨学科应用 3 区 统计学与概率论 4 区 计算机:跨学科应用
JCR分区:
出版当年[2020]版:
Q1 STATISTICS & PROBABILITY Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 STATISTICS & PROBABILITY Q2 BIOCHEMICAL RESEARCH METHODS Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)