高级检索
当前位置: 首页 > 详情页

Generation of synthetic ground glass nodules using generative adversarial networks (GANs)

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ ESCI

单位: [1]Maastricht Univ Med Ctr, GROW Sch Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands [2]Tianjin Med Univ Canc Inst & Hosp, Dept Radiat Oncol, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc,Key Lab Canc Preventio, Tianjin, Peoples R China [3]Capital Med Univ, Beijing Friendship Hosp, Dept Ultrasound, Beijing, Peoples R China [4]Maastricht Univ, Dept Obstet & Gynecol, GROW Sch Oncol & Dev Biol, Med Ctr, Maastricht, Netherlands [5]Maastricht Univ, GROW Sch Oncol & Reprod, Dept Pulm Dis, Med Ctr, Maastricht, Netherlands [6]Maastricht Univ, Dept Radiol & Nucl Med, Med Ctr, Maastricht, Netherlands
出处:

关键词: Deep learning Tomography (x-ray computed) Lung Neural networks (computer) Solitary pulmonary nodule

摘要:
Background Data shortage is a common challenge in developing computer-aided diagnosis systems. We developed a generative adversarial network (GAN) model to generate synthetic lung lesions mimicking ground glass nodules (GGNs). Methods We used 216 computed tomography images with 340 GGNs from the Lung Image Database Consortium and Image Database Resource Initiative database. A GAN model retrieving information from the whole image and the GGN region was built. The generated samples were evaluated with visual Turing test performed by four experienced radiologists or pulmonologists. Radiomic features were compared between real and synthetic nodules. Performances were evaluated by area under the curve (AUC) at receiver operating characteristic analysis. In addition, we trained a classification model (ResNet) to investigate whether the synthetic GGNs can improve the performances algorithm and how performances changed as a function of labelled data used in training. Results Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians. Of 93 radiomic features, 58 (62.4%) showed no significant difference between synthetic and real GGNs (p >= 0.052). The discrimination performances of physicians (AUC 0.68) and radiomics (AUC 0.66) were similar, with no-significantly different (p = 0.23), but clinicians achieved a better accuracy (AUC 0.74) than radiomics (AUC 0.62) (p < 0.001). The classification model trained on datasets with synthetic data performed better than models without the addition of synthetic data. Conclusions GAN has promising potential for generating GGNs. Through similar AUC, clinicians achieved better ability to diagnose whether the data is synthetic than radiomics.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版]

第一作者:
第一作者单位: [1]Maastricht Univ Med Ctr, GROW Sch Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)