高级检索
当前位置: 首页 > 详情页

Automatic Recognition of Parathyroid Nodules in Ultrasound Images Based on Fused Prior Pathological Knowledge Features

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI ◇ 预警期刊

单位: [1]Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China [2]School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China [3]First Research Institute of the Ministry of Public Security of China, Beijing 100048, China [4]China-Japan Friendship Hospital, Beijing 100029, China
出处:
ISSN:

关键词: Ultrasonic imaging Image segmentation Level set Entropy Image recognition Adaptation models Nonhomogeneous media Parathyroid nodules ultrasound images hybrid level set prior pathological knowledge image local entropy SVDD

摘要:
Automation diagnosis of parathyroid nodules is of crucial importance to recognize parathyroid nodules in ultrasound images. Aiming at the different nodule shapes of diverse patients, blurred boundaries, complex backgrounds and inhomogeneous intensity of ultrasound images, we propose a novel hybrid level set model to accurately segment nodules. The adaptive global term weight is determined based on the image local entropy of the region around the evolution contour and two scales are proposed for the local term to drive the evolution contour fast approaching to the boundary in order to avoid large amount of calculation and over-segmentation. We also propose membrane features and relative position features based on prior pathological knowledge to describe the inherent characteristics of parathyroid nodules different from thyroid and other nodules. We fused prior pathological knowledge features, morphology features and texture features of the segmented nodules to recognize parathyroid nodules by the support vector data description(SVDD). The experiment result indicates that the incorporation of the proposed hybrid level set segmentation method and the fused prior pathological knowledge features, morphology features and texture features improve the recognition accuracy and efficiency of parathyroid nodules, which is much higher than that only with morphology and texture features.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 工程:电子与电气 3 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 TELECOMMUNICATIONS
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2019版] 出版当年五年平均[2015-2019] 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China [2]School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
通讯作者:
通讯机构: [1]Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China [2]School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)