高级检索
当前位置: 首页 > 详情页

Volume-awareness and outlier-suppression co-training for weakly-supervised MRI breast mass segmentation with partial annotations

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Beijing Inst Technol, Beijing Engn Res Ctr Mixed Real & Adv Display, Sch Opt & Photon, Beijing 100081, Peoples R China [2]China Japan Friendship Hosp, Dept Radiol, Beijing 100029, Peoples R China [3]Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China [4]Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China [5]Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Laser Med, Beijing 100853, Peoples R China
出处:
ISSN:

关键词: Breast mass Weakly -supervised learning Image segmentation Partial annotation

摘要:
Segmenting breast mass from magnetic resonance imaging (MRI) scans is an important step in the breast cancer diagnostic procedure for physicians and computer-aided diagnosis systems. Sufficient high-quality annotation is essential for establishing an automatic segmentation model, particularly for MRI breast masses with complex backgrounds and various sizes. In this study, we have proposed a novel approach for training an MRI breast mass segmentation network with partial annotations and reinforcing it with two weakly supervised constraint losses. Specifically, following three user-friendly partial annotation methods were designed to alleviate annotation costs: single-slice, orthogonal slice, and interval slice annotations. With the guidance of partial annotations, we first introduced a volume awareness loss that supports the additional constraint for masses with various scales. Moreover, to reduce false-positive predictions, we proposed an end-to-end differentiable outlier-suppression loss to suppress noise activation outside the target during training. We validated our method on 140 patients. The Dice similarity coefficient (DSC) of the proposed three partial annotation methods are 0.674, 0.835, and 0.837 respectively. Quantitative and qualitative evaluations demonstrate that our method can achieve competitive performance compared to state-of-the-art methods with complete annotations. (c) 2022 Published by Elsevier B.V.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均[2021-2025] 出版当年[2020版] 出版当年五年平均[2016-2020] 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Beijing Inst Technol, Beijing Engn Res Ctr Mixed Real & Adv Display, Sch Opt & Photon, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:1320 今日访问量:0 总访问量:816 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)